

ETR1201_002a

1.2V Input / Output Rail To Rail CMOS Op Amp

■GENERAL DESCRIPTION

The XC221A series is an input / output rail to rail CMOS Op Amp.

With rail to rail functions, operation is guaranteed from power supplies as low as 1.2V. Moreover, since the XC221A series comes in an ultra small SOT-25 package, the series is particularly suited for use with various types of portable phones. Bandwidths of 550kHz and slew rates of 0.5V can be achieved even with power consumption as low as $100 \,\mu$ A. Even with large capacitance levels of CL = $200 \,\mathrm{pF}$ (unity gain connection), the XC221A series will not be susceptible to oscillation.

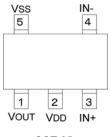
■APPLICATIONS

- ●Palmtop computers, PDAs
- Cellular and portable phones
- Portable audio systems
- Various battery powered systems

■FEATURES

Operating Voltage Range:1.2 ~ 10V (single cell)

 $\pm 0.6 \sim 5V$ (+ve/-ve supply)


Output Signal :0.1~2.9V (3V single cell, RL= $2k\Omega$)

Gain Bandwidth :550kHz (15 μ A: 210kHz)

Slew Rate $:0.5\text{V}/\mu\,\text{s}$ High Capacitance Load :CL=200pFLow Supply Current $:100\,\mu\,\text{A},\,15\,\mu\,\text{A}$ Input / Output Rail To Rail Operation Package :SOT-25

Environmentally Friendly: EU RoHS Compliant, Pb Free

■PIN CONFIGURATION

SOT-25 (TOP VIEW)

■ PIN ASSIGNMENT

PIN	SYMBOL	FUNCTION
NUMBER		
1	Vout	Output Pin
2	VDD	Positive Power Supply Pin
3	ln+	Positive Input
4	In-	Negative Input
5	Vss	Negative
	. 50	Power Supply Pin

■PRODUCT CLASSIFICATION

Ordering Information

XC221A(1)(2)(3)(4)(5)(6)-(7)(*1)

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
1	The Number of Channels	1	One channel
2	Supply Current	1	15 μ A
2	Supply Current	2	100 μ A
3	Internal Standard Number	0	Fixed
4	Load Capacitance	0	200pF
	Packages	MR	SOT-25
56-7	Taping Type (*2)	MR-G	SOT-25 (Halogen & Antimony free)

⁽¹¹⁾ The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

■ ABSOLUTE MAXIMUM RATINGS

 $Ta = 25^{\circ}C$ Vss = 0V

		14 20	0, 033 – 00
PARAMETER	SYMBOL	RATINGS	UNITS
VDD Pin Voltage	VDD	-0.3 ~ 12.0	V
OUT Pin Voltage	Vout	-0.3 ~ 12.0	V
IN Pin Voltage	VIN+	-0.3~VDD+0.3	V
IN/ Pin Voltage	VIN-	-0.3∼VDD+0.3	V
OUT Pin Current	lout	±100	mA
Power Dissipation	Pd	150	mW
Operating Temperature Range	Topr	-30 ∼ +80	°C
Storage Temperature Range	Tstg	-40 ~ +125	°C

RAIL-TO-RAIL is a trademark of Motorola.

^(*2) The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: ⑤R-⑦, Reverse orientation: ⑤L-⑦)

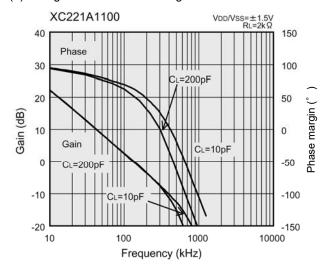
■ELECTRICAL CHARACTERISTICS

XC221A1100	IDD = $15 \mu A$	Ta = 25°C
7022 IA 1100	100 – 13 μ Α	1a - 25 C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	VDD		1.2	-	10.0	V
Supply Current	Inn	V _{DD} = 3V	10	15	23	μΑ
Supply Current	IDD	V _{DD} = 1.2V	2.5	8	23	μΑ
Input Offset Voltage	Vof		-	1	20.0	mV
Input Offset Current	IOF		-	1	-	pА
Input Bias Current	IB		-	1	-	pА
Input Resistance	RIN		-	1	-	ТΩ
Large Signal Voltage Gain	Avd		75	110	-	dB
Common Mode	CMRR	0≦Vcм≦3.0V	60	75		dB
Rejection Ratio	CIVIRR	RR 0≦ VCM≦3.0V	00	73	-	ub
Power Supply	Psrr+	VDD = 3 to 10V, Vss = 0V, Vout = 1.5V	60	75	-	dB
Rejection Ratio	Psrr-	Vss=-3 to -10V, VDD= 0V, VOUT= -1.5V	60	75	-	dB
		RL= ∞	0.05	-	VDD-0.05	V
		$VDD = 1.2V$, $RL = 47k\Omega$ (to $VDD/2$)	0.10	•	1.10	V
Output Voltage Range	Vout	$VDD = 3V$, $RL = 2k\Omega$ (to $VDD/2$)	0.10	-	2.90	V
		$VDD = 5V$, $RL = 2k\Omega$ (to $VDD/2$)	0.10	-	4.90	V
		$VDD = 10V$, $RL = 2k\Omega$ (to $VDD/2$)	0.10	-	9.80	V
Gain Bandwidth	FT	V _{DD} = 3V	-	210	-	kHz
Slew Rate	SR	V _{DD} = 3V	-	0.07	-	V/ μ sec

Test Conditions :Unless otherwise stated, VDD = 3.0V, VSS = 0V, VCM = VOUT = VDD / 2, RL = 1M Ω (to VSS), CL = 10pF (to VSS)

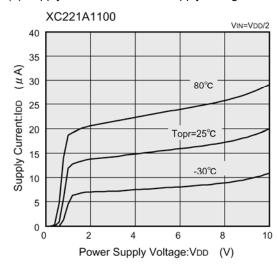
10 - 23 C	XC221A1200	IDD = $100 \mu A$	Ta = 25°C
-----------	------------	-------------------	-----------

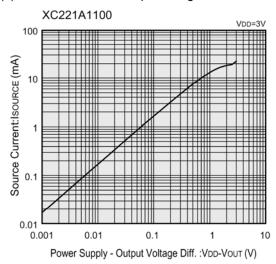

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	VDD		1.2	-	10.0	V
Supply Current	IDD	VDD = 3V	67	100	150	μΑ
Supply Current	טטו	VDD = 1.2V	16.75	50.00	150.00	μΑ
Input Offset Voltage	Vof		-	-	20.0	mV
Input Offset Current	lof		-	1	-	pА
Input Bias Current	lв		-	1	-	pА
Input Resistance	Rin		-	1	-	ТΩ
Large Signal Voltage Gain	Avd		75	110	-	dB
Common Mode Rejection Ratio	CMRR	0≦Vcм≦3.0V	60	75	-	dB
Power Supply Rejection	Psrr+	VDD=3 to 10V, Vss = 0V, Vout = 1.5V	60	75	-	dB
Ratio	Psrr-	Vss=-3 to -10V, VDD=0V, VOUT=-1.5V	60	75	-	dB
		RL= ∞	0.05	-	VDD-0.05	V
		VDD = 1.2V, RL = $47k\Omega$ (to VDD/2)	0.10	-	1.10	V
Output Voltage Range	Vout	VDD = 3V, RL = $2k\Omega$ (to VDD/2)	0.10	-	2.90	V
		VDD = 5V, RL = $2k\Omega$ (to VDD/2)	0.10	-	4.90	V
		VDD = 10V, RL = $2k\Omega$ (to VDD/2)	0.10	-	9.80	V
Gain Bandwidth	FT	VDD = 3V	-	550	-	kHz
Slew Rate	SR	VDD = 3V	-	0.50	-	V/ μ sec

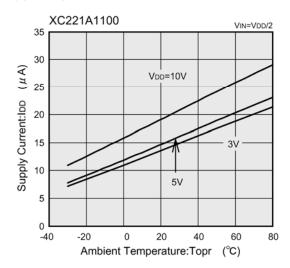
Test Conditions :Unless otherwise stated, VDD = 3.0V, VSS = 0V, VCM = VOUT = VDD / 2, RL = 1M Ω (to VSS), CL = 10pF (to VSS)

■TYPICAL PERFORMANCE CHARACTERISTICS

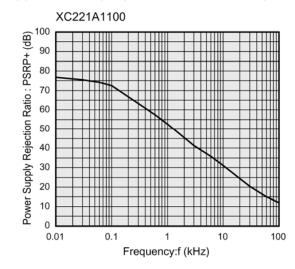
•XC221A1100 <15 μ A>

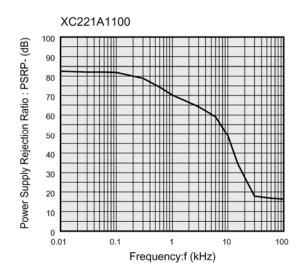

(1) Voltage Gain vs. Phase Margin


(2) Sink Current vs. Output Voltage

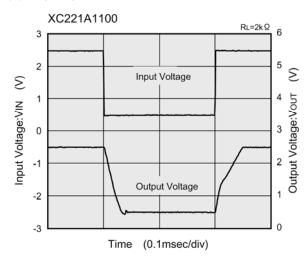

(4) Supply Current vs. Power Supply Voltage

(3) Source Current vs. Output Voltage

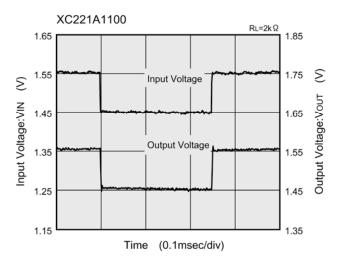

(5) Supply Current vs. Ambient Temperature



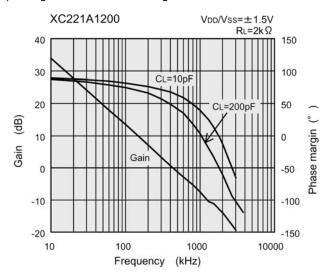
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

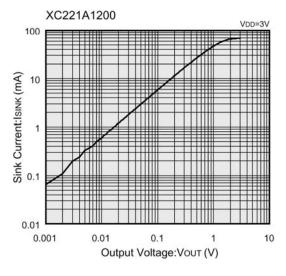

• XC221A1100 < 15 μ A> (Continued)

(6) Power Supply Rejection Ratio vs. Frequency

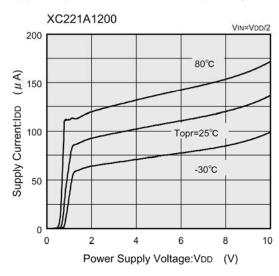


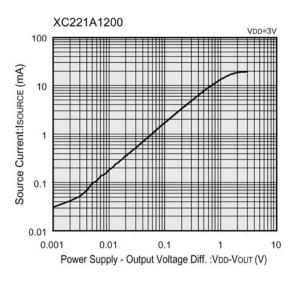
(7) Large Signal Input / Output Response

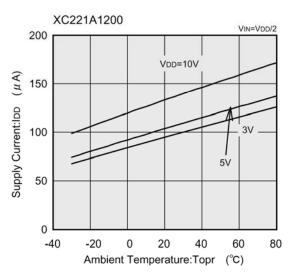

(8) Small Signal Input / Output Response


■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

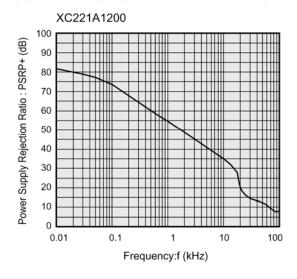
•XC221A1200 <100 μ A>

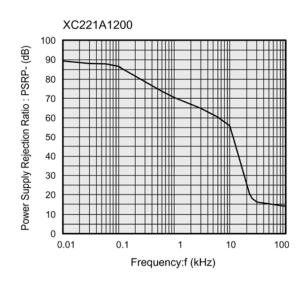

(1) Voltage Gain vs. Phase Margin


(2) Sink Current vs. Output Voltage

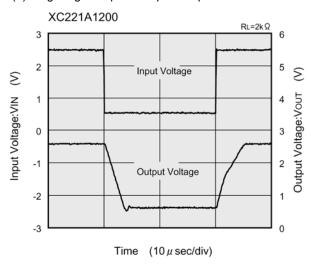

(4) Supply Current vs. Power Supply Voltage

(3) Source Current vs. Output Voltage

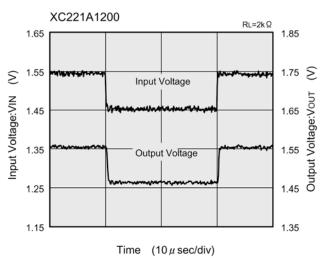

(5) Supply Current vs. Ambient Temperature



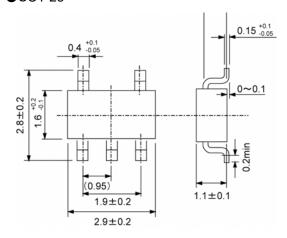
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)


•XC221A1200 <100 μ A> (Continued)

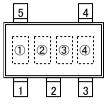
(6) Power Supply Rejection Ratio vs. Frequency



(7) Large Signal Input / Output Response



(8) Small Signal Input / Output Response



■PACKAGING INFORMATION

●SOT-25

■MARKING RULE

SOT-25 (TOP VIEW) ① represents product series and supply current

MARK	PRODUCT SERIES	SUPPLY CURRENT	
1	XC221A11	15 μ A	
2	XC221A12	100 <i>μ</i> A	

- 2 based on internal standards
- 3 represents load capacitance

MARK	LOAD CAPACITANCE
0	200pF

④ represents the production lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.