Tri-State Buffer ICs

GENERAL DESCRIPTION

The 2300 Series are a group of high frequency, CMOS low power tri-state buffer ICs with input amplifier, divider and output tri-state buffer circuits built-in.

The series is available in an ultra small SOT-26 package.

APPLICATIONS

- VCXO modules
- Crystal oscillator modules

FEATURES

Max. Operating Frequency	$: 70 \mathrm{MHz}$
Operating Voltage Range	$: 3.3 \mathrm{~V} \pm 10 \%, 5.0 \mathrm{~V} \pm 20 \%$
Divider Ratio	$:$ fin $/ 1$
Output	$: 3$-State
CMOS Low Power Consumption	
Built-In Input Amplifier Ultra Small Package $:$ SOT- 26 Environmentally Friendly $:$ EU RoHS Compliant, Pb Free	

PIN CONFIGURATION

SOT-26 (TOP VIEW)

PIN ASSIGNMENT

PIN NUMBER	PIN NAME	FUNCTION
1	/INH	Stand-by Control (*)
2	XT	Clock Input
3	VSs	Ground
4	Q0	Clock Output
5	VDD	Power Supply
6	/XT	Feedback Resistor Connection (Output)

*Stand-by control pin has a pull-up resistor built-in.

■/INH, QO PIN FUNCTION

/INH	Q0
"H" or OPEN	Clock Output
"L"	High Impedance

PRODUCT CLASSIFICATION

- Ordering Information

XC2300(1)(2)(3)(4)(5)-(7) ${ }^{\left({ }^{(1)}\right.}$

DESTINATOR	DESCRIPTION	SIMBOL	DESCRIPTION
(1)	Duty Level	C	$:$ CMOS (VDD/2)
(2)	Fixed Number	2	$:-$
(3)	Divider Ratio	1	$:$ Q0=fin/1
(4)	Output	V	: Tri-state buffer
$(5)(6)-7)$	Packages Taping Type ${ }^{\left({ }^{*} 2\right)}$	MR-G	: SOT-26

${ }^{(* 1)}$ The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.
$\left.{ }^{(}{ }^{*} 2\right)$ The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: (5)R-7), Reverse orientation: (5)L-7)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

$\mathrm{Ta}=25^{\circ} \mathrm{C}$			
PARAMETER	SYMBOL	CONDITIONS	UNITS
Supply Voltage	VDD	Vss $-0.3 \sim$ Vss +7.0	V
Input Voltage	VIN	Vss $-0.3 \sim$ VDD +0.3	V
Power Dissipation	Pd	$250(* *)$	mW
Operating Temperature Range	Topr	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

** When implemented on a glass epoxy PCB.

■ELECTRICAL CHARACTERISTICS

-DC Electrical Characteristics
5.0V operation
(Unless otherwise stated, Vdd=5.0V, No Load, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNITS
Operating Supply Voltage	Vdd			4.0	5.0	6.0	V
Input Voltage "High"	VIH	/INH pin		2.4	-	-	V
Input Voltage "Low"	VIL	/lnh pin		-	-	0.4	V
Output Voltage "High"	VOH	Qo pin, VDD $=4.5 \mathrm{~V}$, $\mathrm{IOH}=-8 \mathrm{~mA}$		3.9	4.2	-	V
Output Voltage "Low"	Vol	Q0 pin, $\mathrm{VDD}=4.5 \mathrm{~V}$, IOL $=8 \mathrm{~mA}$		-	0.3	0.4	V
Supply Current 1	IDD1	$\begin{aligned} / \mathrm{INH} & =\mathrm{OPEN}, \\ \mathrm{Q}_{0} & =\mathrm{OPEN} \\ \mathrm{Fin} & =70 \mathrm{MHz} \end{aligned}$	XC2300C21V (fin/1)	-	21.0	-	mA
Supply Current 2	IdD2	/lnh="L", fin=70MHz		-	0.05	-	mA
Input Pull-Up Resistance 1	Rup1	/INH="L"		2.0	4.0	8.0	$\mathrm{M} \Omega$
Input Pull-Up Resistance 2	Rup2	//InH=0.7VDD		50	100	200	k ,
Output Off Leak Current	Ioz	Qo pin, /lnh="L"		-	-	10	$\mu \mathrm{A}$

3.3 V operation
(Unless otherwise stated, Vdd $=3.3 \mathrm{~V}$, No Load, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNITS
Operating Supply Voltage	Vdd			2.97	3.30	3.63	V
Input Voltage "High"	VIH	/InH pin		2.4	-	-	V
Input Voltage "Low"	VIL	/Inh pin		-	-	0.4	V
Output Voltage "High"	VOH	Qo pin, VDD $=4.5 \mathrm{~V}$, $\mathrm{IOH}=-4 \mathrm{~mA}$		2.2	2.4	-	V
Output Voltage "Low"	Vol	Q0 pin, VDD $=4.5 \mathrm{~V}$, IOL $=4 \mathrm{~mA}$		-	0.3	0.4	V
Supply Current 1	IDD1	$\begin{gathered} / \mathrm{INH}=\mathrm{OPEN}, \\ \text { Q0}=\mathrm{OPEN} \\ \text { Fin }=50 \mathrm{MHz} \end{gathered}$	XC2300C21V (fin/1)	-	8.0	-	mA
Supply Current 2	IdD2	/INH ="L", fin=50MHz		-	0.05	-	mA
Input Pull-Up Resistance 1	Rup1	/INH = "L"		4.0	7.0	14.0	$\mathrm{M} \Omega$
Input Pull-Up Resistance 2	Rup2	$/ \mathrm{lnh}=0.7 \mathrm{Vdd}$		70	130	250	k Ω
Output Off Leak Current	Ioz	Qo pin, /lnh ="L"		-	-	10	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTIC (Continued)

- AC Electrical Characteristics

5.0V operation

(Unless otherwise stated, VDD $=5.0 \mathrm{~V}$, No Load, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum Operating Frequency	fmax		70	-	-	MHz

5.0V operation (Reference value)
(Unless otherwise stated, VdD=5.0V, No Load, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Amplitude (Sin wave)	Vipp		0.5	-	-	Vpp
Output Duty Cycle (*1)	DUTY	fin=70MHz, CL=15pF, Vipp=0.5Vpp	45	-	55	\%
Output Rise Time (*2)	tr	fin $=70 \mathrm{MHz}$, CL=15pF, Vipp $=0.5 \mathrm{Vpp}$	-	(3.0)	5.0	ns
Output Fall Time (*3)	tf	$\mathrm{fin}=70 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{FF}$, Vipp=0.5Vpp	-	(1.5)	5.0	ns

*1) 0.5 VDD
*2) $0.1 \mathrm{VDD} \rightarrow 0.9 \mathrm{VDD}$
*3) $0.9 \mathrm{VDD} \rightarrow 0.1 \mathrm{VDD}$
3.3V operation
(Unless otherwise stated, Vdd=3.3V, No Load, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum Operating Frequency	fmax		50	-	-	MHz

3.3 V operation (Reference value)
(Unless otherwise stated, Vdd $=3.3 \mathrm{~V}$, No Load, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Amplitude (Sin wave)	Vipp		0.5	-	-	Vpp
Output Duty Cycle (*1)	DUTY	fin $=50 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$, Vipp=0.5Vpp	45	-	55	$\%$
Output Rise Time (*2)	tr	fin $=50 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$, Vipp=0.5Vpp	-	(4.0)	8.0	ns
Output Fall Time (*3)	tf	fin=50MHz, CL=15pF, Vipp=0.5Vpp	-	(2.0)	8.0	ns

*1) 0.5 VDD
*2) $0.1 \mathrm{VdD} \rightarrow 0.9 \mathrm{VDD}$
*3) $0.9 \mathrm{VDD} \rightarrow 0.1 \mathrm{VDD}$

SWITCHING WAVEFORMS

(1) Switching Time

(2) Duty Cycle

■SUPPLY CURRENT, DUTY TEST CIRCUIT

[^0]

PACKAGING INFORMATION
-SOT-26

- MARKING RULE

-SOT-26

SOT-26
(TOP VIEW)
(1)Represents product series

MARK	PRODUCT SERIES
0	XC2300xxxxxx

(2)Represents divider ratio

MARK	RATIO
C	fin $/ 1$

(3)Represents tri-state buffer ICs

MARK
V

(4)Represents assembly lot number (Based on internal standards)

1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.

Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.

[^0]: *) The feedback resistor (fixed) Rf must be connected
 *) When the duty needs to be adjusted because of power supply and/or input amplitude, duty resistor (fixed) Rb should be connected.
 <Reference Peripheral Values: Rf, Rb, CIN> Vdd $=5.0 \mathrm{~V}$, fin $=70 \mathrm{MHz}$, Vipp $=0.5 \mathrm{Vpp}$
 $\mathrm{CIN}=10000[\mathrm{pF}]$
 $\mathrm{Rf}=100[\mathrm{k} \Omega]$
 $\mathrm{Rb}=720[\mathrm{k} \Omega]$
 Vdd $=3.3 \mathrm{~V}, \mathrm{fin}=50 \mathrm{MHz}$, Vipp $=0.5 \mathrm{~V} p \mathrm{p}$
 CIN $=10000[\mathrm{pF}]$
 $\mathrm{Rf}=100[\mathrm{k} \Omega]$
 $\mathrm{Rb}=820[\mathrm{k} \Omega]$

