XC25BS5 series is Discontinued. XC25BS5 Series

ETR1502_003a

PLL Clock Generator ICs with Built-In Divider/Multiplier Circuits (For Low Frequency Range)

GENERAL DESCRIPTION

The XC25BS5 series are high frequency, low power consumption PLL clock generator ICs with divider circuit & multiplier PLL circuit.

Laser trimming gives the option of being able to select from divider ratios (M) of 1,3 to 2047 and multiplier ratios (N) of 6 to 2047.

Output frequency (Q0) is equal to reference oscillation (fCLKin) multiplied by N/M, within a range of 3MHz to 30MHz. Q1 output is selectable from input reference frequency (f0), input reference frequency/2 (f0/2), ground (GND), and comparative frequency (f0/M). Further, comparative frequencies, within a range of 12KHz to 500KHz, can be obtained by dividing the reference oscillation. By halting operation via the CE pin, consumption current can be controlled and output will be one of high-impedance.

APPLICATIONS

Crystal oscillation modules

Personal computers

PDAs

Portable audio systems

Various system clocks

FEATURES

Output Frequency : 3MHz ~ 30MHz (Q0=fCLKin × N/M) **Input Frequency (fCLKin)**

	: 12kHz ~ 35MHz
Divider Ratio (M)	: Selectable from divisions of 1, 3~2047
Multiplier Ratio (N)	: Selectable from multiplications of 6~2047
Output	: 3-State
	Q1 output selectable from input reference
	oscillation, input reference oscillation/2,
	GND, comparative frequency.
Operating Voltage F	Range
	: 2.97V ~ 5.5V
Low Power Consun	nption

: CMOS (stand-by function included)*1

Comparative Frequency

: 12kHz~500kHz

Package	: SOT-26, USP-6B	

*1 High output impedance during standby Environmentally Friendly: EU RoHS Compliant, Pb Free

PIN CONFIGURATION

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the VDD pin.

PIN ASSIGNMENT

PIN NU	JMBER	PIN	ELINCTION
SOT-26	USP-6B	NAME	FUNCTION
1	3	CE	Chip Enable
2	2	Vss	GND
3	1	Q0	PLL Output
4	6	Q1	Reference Oscillation, Reference Oscillation/2, GND, or Comparative Frequency Output
5	5	Vdd	Power Supply
6	4	CLKin	Reference Clock Input

FUNCTION LIST

CE	FUNCTION	
"H"	Q0, Q1 Clock Output	
"L"	Stand-by. Output Pin = High Impedance	
Opon	Stand-by. Output Pin = High Impedance	"H" = High level
Open	(Vss Pin Pull-Down Due to IC's Internal Resistor)	"L" = Low level

PRODUCT CLASSIFICATION

Ordering Information

<u>XC25BS5</u> - ^(*1)

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
	Product Number	Integer	Based on internal standards e.g. Product number 001 = 001
		MR	SOT-26
	Packages	MR-G	SOT-26
-	Taping Type ^(*2)	DR	USP-6B
		DR-G	USP-6B

(*1) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.
 (*2) The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: R-, Reverse orientation: L-)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Ta = 25

PARAMETER		SYMBOL	CONDITIONS	UNITS	
Supply Voltage	;	Vdd	Vss-0.3 ~ Vss+7.0	V	
CLKin Pin Voltag	ge	Vск	Vss-0.3 ~ Vdd+0.3	V	
CE Pin Voltage)	VCE	Vss-0.3 ~ Vdd+0.3	V	
Q0 Pin Voltage		Vqo	Vss-0.3 ~ Vdd+0.3	V	
Q1 Pin Voltage		VQ1	Vss-0.3 ~ Vdd+0.3	V	
Q0 Output Current		IQO	±50	mA	
Q0 Output Curre	ent	lq1	±50	mA	
Dower Dissinction	SOT-26	Dd	150	~\\/	
Power Dissipation	USP-6B	Pu	100	mvv	
Operating Temperature	e Range	Topr	- 30 ~ + 80	°C	
Storage Temperature	Range	Tstg	- 40 ~ +125	°C	

FREQUENCY CONFIGURATION: EXAMPLE 1

XC25BS51XXMR

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Input Frequency	f CLKin	11.0000	-	16.9344	MHz
Multiplier/Divider Ratio	N/M	-	1.594	-	-
PLL Output Frequency	fQ0	17.5383	-	27.0000	MHz
Q1 Output Frequency	Q1		GND		-

Electrical Characteristics (DC) XC25BS51xxMR

fCLKin = 16.9344MHz, Multiplier/Divider Ratio = 1.594, Ta = 25 , No Load

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	Vdd		2.97	3.30	3.63	V
Input Voltage "High"	Vін		2.7	-	-	V
Input Voltage "Low"	VIL		-	-	0.6	V
Input Current "High"	Іін	Vck = 3.3V	-	-	3.0	μA
Input Current "Low"	١L	Vск = 0V	-3.0	-	-	μA
Output Voltage "High"	Vон	Vdd = 2.97V, Ioн = -8mA	2.5	-	-	V
Output Voltage "Low"	Vol	VDD = 2.97V, IOL = 8mA	-	-	0.4	V
Supply Current 1	IDD1	CE = 3.3V	-	3.0	6.0	mA
Supply Current 2	IDD2	CE = 0V	-	-	5.0	μA
CE "High" Voltage	VCEH		2.7	-	-	V
CE "Low" Voltage	VCEL		-	-	0.45	V
CE Pull-Down Resistance 1	Rp1	CE = 3.3V	0.5	1.5	2.5	М
CE Pull-Down Resistance 2	Rp2	CE = 0.3V	20.0	50.0	80.0	k

Electrical Characteristics	(AC)
XC25BS51xxMR	

fCLKin=16.9344MHz, Multiplier/Divider Ratio=1.594, Ta=25 , CL=15pF

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Rise Time	Ttlh	VDD=3.3V(20% to 80%) (*1)	-	5.0	-	ns
Output Fall Time	TTHL	VDD=3.3V(20% to 80%) (*1)	-	5.0	-	ns
Duty Ratio	DUTY		40	50	60	%
Output Start Time	Ton	(*1)	-	-	20	ms
PLL Output Jitter	Tj	1 (*1)	-	40	-	ps

*1 R&D guarantee

FREQUENCY CONFIGURATION: EXAMPLE 2

XC25BS51XXMX

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Input Frequency	f CLKin	52.0000	-	78.0000	kHz
Multiplier/Divider Ratio	N/M	-	256.000	-	-
PLL Output Frequency	fQ0	13.312	-	19.968	MHz
Q1 Output Frequency	Q1		GND		-

Electrical Characteristics (DC) XC25BS51xxMR

fCLKin=78kHz, Multiplier/Divider Ratio=256, Ta=25 , No Load

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	Vdd		2.97	3.30	3.63	V
Input Voltage "High"	Vін		2.7	-	-	V
Input Voltage "Low"	VIL		-	-	0.6	V
Input Current "High"	Іін	Vск=3.3V	-	-	3.0	μA
Input Current "Low"	lı∟	Vck=0V	-3.0	-	-	μA
Output Voltage "High"	Vон	Vdd=2.97V, IOн= - 8mA	2.5	-	-	V
Output Voltage "Low"	Vol	VDD=2.97V, IOL=8mA	-	-	0.4	V
Supply Current 1	IDD1	CE=0.3V	-	2.0	4.0	mA
Supply Current 2	IDD2	CE=0V	-	-	5.0	μA
CE " High " Voltage	VCEH		2.7	-	-	V
CE "Low" Voltage	VCEL		-	-	0.45	V
CE Pull-Down Resistance 1	Rp1	CE=3.3V	0.5	1.5	2.5	М
CE Pull-Down Resistance 2	Rp2	CE=0.3V	20.0	50.0	80.0	К

Electrical Characteristics (AC) XC25BS51xxMR

fCLKin=78kHz, Multiplier/Divider Ratio=256, Ta=25 , CL=15pF

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Rise Time	Ttlh	VDD=3.3V(20% to 80%) (*1)	-	5.0	-	ns
Output Fall Time	TTHL	VDD=3.3V(20% to 80%) (*1)	-	5.0	-	ns
Duty Ratio	DUTY		40	50	60	%
Output Start Time	Ton	(*1)	-	-	20	ms
PLL Output Jitter	Tj	1 (*1)	-	20	-	ps

*1 R&D guarantee

TOIREX 5/12

TYPICAL APPLICATION CIRCUITS

Q1 Pin - reference oscillation, reference oscillation/2, comparative frequency

Q1 Pin - GND

NOTE

- (1) Please insert a by-pass capacitor of 0.1 μ F.
- (2) Rq0 and Rq1 are matching resistors. Their use is recommended in order to counter unwanted radiations.
- (3) Please place a by-pass capacitor and matching resistors as close to the IC as possible. It may be that the output cannot be locked if the by-pass capacitor is not close enough to the IC. Further, there is a possibility of unwanted radiation occurrence between the resistor and the IC pin if the matching resistor is not close enough to the IC.
- (4) When selecting GND for the Q1 pin, although the output of Q1 pin is GND level, it is also recommended that the Q1 pin be connected to GND pattern on the PCB.
- (5) When the CE pin is not controlled by external signals, it is recommended that a time constant circuit of R1=1k \times C1 = 0.1 μ F be added for stability.
- (6) With this IC, output is achieved by dividing and multiplying the reference oscillation by means of the PLL circuit. In cases where this output is further used as a reference oscillation of another PLL circuit, it may be that the final output signal's jitter increases, so all necessary precautions should be taken to avoid this.
- (7) It is recommended that a low noise power supply, such as a series regulator, be used for the supply voltage. Using a power supply such as a switching regulator might lead to a larger jitter, which in turn may lead to an inability to lock due to the ripple of the switching regulator.
- (8) As for this IC, synchronization of input and output signal's edge is not guaranteed though the input frequency operates to the output frequency multiply.

XC25BS5 Series

REFERENCE LAND PATTERN

Q1 Pin - reference oscillation, reference oscillation/2, comparative frequency

Q1 Pin - GND

AC CHARACTERISTIC WAVEFORMS

1) Output Rise Time / Output Fall Time

2) Duty Ratio

3) Output Start Time

TOIREX 7/12

PACKAGING INFORMATION

USP-6B Reference Pattern Layout

USP-6B Reference Metal Mask Design

8/12

MARKING RULE

SOT-26

XC25BS50

represents product series

MARK			
1	2	PRODUCT SERIES	
В	5	XC25BS50**M*	

represents the 10th digit of product part number

MARK	PRODUCT SERIES
1	XC25BS5001M*
5	XC25BS5005M*
6	XC25BS5006M*

represents production lot number

XC25BS51 represents product series

MARK	PRODUCT SERIES
5	XC25BS51**M*

represents the 9th and 10th digits of product part number

MARK			
2	3	PRODUCT SERIES	
0	7	XC25BS5107M*	

USP-6B

, represents product series

1	<u> </u>		1
1		·····	6
2			5
2	r-ı	[4
3	Ţ		

USP-6B (TOP VIEW)

MARK		<		
1	2	3	PRODUCT SERIES	
В	S	0	XC25BS50**D*	
в	S	1	XC25BS51**D*	

represents the 9th and 10th digit of product part number

0 to 9,A to Z reversed character 0 to 9,A to Z repeated (G, I, J, O, Q, W excluded)

Ex)

,

MARK			
4	5	PRODUCT SERIES	
0	7	XC25BS5*07D*	

represents production lot number

0 to 9,A to Z repeated (G, I, J, O, Q, W excluded) Note: No character inversion used.

XC25BS5 Series

PACKAGING INFORMATION (Continued)

SOT-26 Power Dissipation

Power dissipation data for the SOT-26 is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side) Copper (Cu) traces occupy 50% of the board area In top and back faces Package heat-sink is tied to the copper traces Material: Glass Epoxy (FR-4)

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient Temperature

Board Mount (Tj max = 125)

Ambient Temperature(°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)	
25	600	- 166.67	
85	240		

PACKAGING INFORMATION (Continued)

USP-6B Power Dissipation

Power dissipation data for the USP-6B is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition.

- 1. Measurement Condition (Reference data)
 - Condition: Mount on a board Ambient: Natural convection Soldering: Lead (Pb) free Board: Dimensions 40 x 40 mm (1600 mm² in one side) Copper (Cu) traces occupy 50% of the board area In top and back faces Package heat-sink is tied to the copper traces Material: Glass Epoxy (FR-4) Thickness: 1.6 mm Through-hole: 4 x 0.8 Diameter

2. Power Dissipation vs. Ambient Temperature

Evaluation Board (Unit: mm)

Board Mount (Tj max = 125)

Ambient Temperature(°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)	
25	1000	- 100.00	
85	400		

XC25BS5 Series

equipment thereof.)

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 (e.g. Atomic energy; aerospace; transport; combustion and associated safety
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.