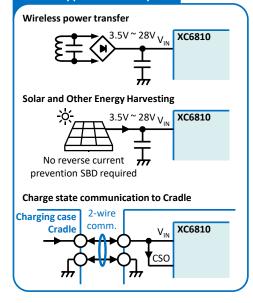


Li Rechargeable Battery : Ultra-Small and Multi-Function Solutions


Ultra-small products using Li-ion/Polymer Rechargeable battery : Hearables/Wearables/IoT Sensor etc.

Challenges : Various controls and protections suitable for small Li-ion/Polymer
Prevention of discharge after shipment / Charge status & Battery voltage monitoring
Two-wire communication to Cradle / Supports various types of energy harvesting

	Product		Features				
(1) Li Charger IC	XC6810 (FEATURED)		3.5V~28V, CV=3.80V~4.40V, CC=1mA~25mA Battery Temperature Monitor, Charge ON/OFF, Current path Charge status & Battery voltage monitoring Shutdown/Wake-up, Two-wire communication to Cradle Supports various types of energy harvesting				
(2) Step-down DC/DC	<u>XCL244</u>	NEW	Built-in inductor, HiSAT-COT, Small area/Thin, PWM/PFM 3MHz, 700mA				
	<u>XCL233</u>	NEW	Built-in inductor, Iq=200nA, PFM, 150mA, VSET(V _{OUT} selectable)				
	<u>XCL242</u>	NEW	Built-in inductor, HiSAT-COT, Ultra-low EMI, PWM/PFM, 1.2MHz, 500mA				
	<u>XC9291</u>	NEW	HiSAT-COT, Smallest area, PWM/PFM, 4MHz/6MHz, 600mA				
	<u>XC9276</u>	FEATURED	lq=200nA, PFM, 150mA, VSET				

XC6810 Application Examples

(1) Charger IC suitable for small and small-capacity Li batteries : XC6810

- CC/CV control and protection suitable for Li batteries up to 50mAh.
- Battery voltage monitor, BATMON, for monitoring by A/D of MCU.
- Two types of the charger status monitor, **CSO**, are available.

LED drive type and frequency notification type based on charge level which can be used for **two-wire communication with the charger case or cradle**.

- Shutdown by SHDN signal to prevent discharge of Li battery after shipment. Start-up by inputting "L" to Wake-up with Push Button SW or by applying V_{IN}.
- Input range up to 28V to support various types of Energy harvesting.

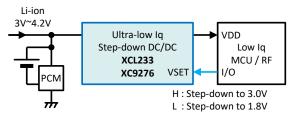
(2) Various ultra-small step-down DC/DCs with low consumption

- Ultra-low consumption / VSET function, Built-in inductor : XCL233
- World's smallest solution with ultra low EMI : XC9291

Low Power Consumption by Utilizing Operation Range of MCU/SoC : VSET, Bypass

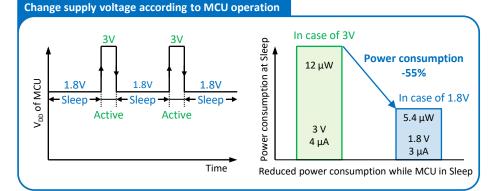
Achieving longer battery life & low power consumption by changing the output voltage based on an operation of MCU/SoC

Technical trend and challenges

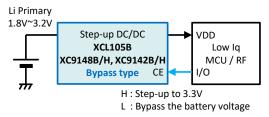

- Current MCU/SoC can operate in a wide voltage range (e.g. 1.6 to 3.8V).
- 3V is required for the analog part and high-speed processing, but a low supply voltage such as 1.8V can be used during sleep mode. This results in lower power consumption.

• TOREX Proposal : Low power consumption by changing output voltage

• Dynamically changing output voltage according to MCU/SoC operation, greatly reducing power consumption in standby state.


VIItra-low Iq Step-down DC/DC with VSET function : XCL233, XC9276

- V_{OUT} can be switched by the VSET pin.
- 200nA Ultra-low Iq achieves always high efficiency: $85.5\%@10\mu A$


Ultra-low Iq VSET (V_{OUT} selectable) function Step-down DC/DC

Product	Features	V _{IN} (V)	V _{OUT} (V)	I _{OUT} (mA)	Package
XCL233 NEW	Built-in inductor VSET(V _{OUT} selectable) Iq=200nA, PFM	1.8~6.0	0.5 ~ 3.6 2 values	150	CL-2025-03 (2.5x2.0x1.04mm)
XC9276 FEATURED	VSET(V _{out} selectable) Iq=200nA, PFM	1.8~6.0	0.5 ~ 3.6 2 values	150	USP-8B06 (2.0x2.0xh0.33mm) SOT-26W (2.8x2.9x1.3mm) WLP-6-03 (1.72x1.07xh0.33mm)

Step-up DC/DC with Bypass function : XCL105B, XC9148B/H, XC9142B/E

- · Switching between voltage boost and battery voltage through
- During MCU sleep, supplying through battery voltage, and Iq of the IC is $0\mu A.$

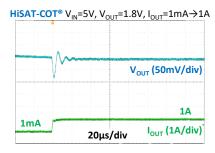
Bypass type Step-up DC/DC

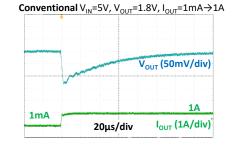
Product	Features	V _{IN} (V)	V _{OUT} (V)	I _{OUT} (mA) @3.3V→5V	Package
XCL105B FEATURED	Built-in inductor PWM/PFM, 1.2MHz	0.65 ~ 6.0 V _{ST} = 0.9	1.8~5.5	710	DFN3030-10B (3.0x3.0xh1.7mm)
XC9148B/H FEATURED	PWM/PFM 1.2MHz/3MHz	0.65 ~ 6.0 V _{ST} = 0.9	1.8~5.5	750	USP-6C (1.8x2.0xh0.6mm) SOT-89-5 (4.5x4.6xh1.6mm)
<u>XC9142B/E</u>	PWM/PFM 1.2MHz/3MHz	0.65 ~ 6.0 V _{ST} = 0.9	1.8~5.5	500	SOT-25 (2.9x2.8xh1.3mm) USP-6C (1.8x2.0xh0.6mm) WLP-6-01 (1.08x1.28xh0.4mm)

OISEX

HiSAT-COT[®] Control for Fast Transient Response

TOREX original COT control : HiSAT-COT®

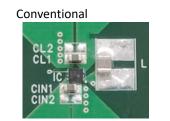

Technical trend and challenges


- Stable power supply including transient response to MCU/SoC/FPGA, etc.
- Miniaturization of circuits including peripheral components, and low EMI.

• TOREX Proposal : HiSAT-COT[®] controlled Step-down DC/DC converter

Significantly faster transient response

• Compared to conventional PWM and PWM/PFM control, it achieves overwhelmingly fast response and thus good voltage stability.



Miniaturization including peripheral components

- High-speed transient response enables **significant reduction of large capacitance** required due to lack of response of conventional PWM.
- Unlike conventional PWM phase compensation, load capacitance CL can be reduced. Also supports a significant reduction in effective capacitance due to the bias effect of ultra-small Ceramic capacitors.

Overview of COT control and HiSAT-COT®

What is COT (Constant on time) control?

- PFM control with the "ton" determined by V_{IN} and V_{OUT} voltages, resulting that appears to be PWM control with constant frequency (fosc).
 High-speed PFM comparator enables fast transient response.
- Generate "ton" in CCM of the targeted fosc from the V_{IN} and V_{OUT} set voltages so that it appears to be a constant frequency PWM control.

• CCM (Continuous Conduction Mode) operation

 Ideal Duty ratio and ton of step-down DC/DC at CCM PWM operation are ton = (1/fosc) x Duty = (1/fosc) x (V_{OUT} / V_{IN}).
If there is no loss, Duty ratio is constant even if I_{OUT} rises.

• How to determine the oscillation frequency of COT control

- Generate the ton of COT control to be the ton of ideal PWM control.
- Continuous mode operation with this ton operates with the same duty as PWM control at the oscillation frequency fosc.

• COT issues and HiSAT-COT®

HiSAT-COT improves the issues of COT control with its own circuits.

- Improved issue of increased oscillation frequency due to output current.
- Improved the deterioration of load stability with an original circuit with an additional amplifier.

Unauthorized duplication and unauthorized reproduction of all or part of this document is prohibited